ARROW SELECTION

USING THE TARGET ARROW SELECTION CHART
1. Once you have determined your Correct Target Arrow Length and Calculated or Actual Peak Bow Weight, you are ready to select your correct shaft size.

1.4 Compound Bows. If the “Calculated Peak Bow Weight” column (left-hand side of the chart), select the column with the type of cam on your bow. Locate your Calculated Peak Bow Weight row in that column.

1.5 Recurve bows and Modern Longbows. If the “Recurve Bow Weight” column (right-hand side of the chart), select the column with the bow type. Next, locate your Actual Peak Bow Weight row in that column.

2. Move across that bow weight row horizontally to the column indicating your Correct Arrow Length. Note the letter in the box where your Calculated or Actual Peak Bow Weight row and Correct Target Arrow Length column intersect. The “Shaft Size” row below the chart with the same letter contains your recommended shaft sizes. Select a shaft from the chart depending on the shaft material, shaft weight, and type of shooting you will be doing.

SELECTING THE CORRECT TARGET SHAFT SIZE

Our Target Shaft Selection Chart will help you find the perfect shaft match for your bow—quickly and easily. Advanced, interactive Spine Weight Comparison and Target Shaft Selection Charts are now available online at www.eastonarchery.com.

1. Determining Correct Target Arrow Length

The Correct Arrow Length for bows (including bows with overdraw) is determined by drawing an extra-long arrow to full draw and having someone mark the arrow one inch in front of where the arrow contacts the most forward portion of the arrow rest.

2. Determining Actual Peak Bow Weight Compound Bows

Compound bows must be measured at the peak bow weight as the bow is being drawn and not while letting the bow down. The suggested shaft sizes in the chart were determined using a “Standard” Setup which includes:

- Use of a release aid
- Compound bow with brace height greater than 6.5

If your setup differs from the “Standard” Setup, use the Variables (below) to make adjustments to determine the Calculated Peak Bow Weight to the correct arrow size can be selected on the chart.

Variables to the “Standard” Setup for Compound Bows

- Peak weight over 100 lbs. — Add 3 lbs. for each 25 lbs. heavier than 100 lbs.
- Bow with brace heights less than 6.5 — Add 5 lbs.
- Finger release — Add 5 lbs.

2.1 Overdraw Compound Bows

If you are using an overdraw, make the variable calculations (if any), and then modify the Calculated Peak Bow Weight of your bow using the chart below.

Length of Overdraw

For 50#–100# Calculated Peak Bow Weight, add to bow weight:

- 24–28 lbs. (10.9–12.7 kg): 1 #
- 28–32 lbs. (12.7–15.6 kg): 3 #
- 32–36 lbs. (15.6–18.3 kg): 5 #
- 36–40 lbs. (18.3–22.7 kg): 7 #

2.1.1 Overdraw Compound Bows

For 50#–70# Calculated Peak Bow Weight, add to bow weight:

- 16–20 lbs. (7.3–9.1 kg): 1 #
- 20–24 lbs. (9.1–10.9 kg): 3 #
- 24–28 lbs. (10.9–12.7 kg): 5 #
- 28–32 lbs. (12.7–15.6 kg): 7 #
- 32–36 lbs. (15.6–18.3 kg): 9 #
- 36–40 lbs. (18.3–22.7 kg): 11 #

Note: If your arrow shaft is longer than peak and weight length, round up to the next larger increment.

2.2 Determining Actual Peak Bow Weight Recurve and Modern Longbows

Your local archery pro shop is the best place to determine the actual bow weight of your bow. Actual Peak Bow Weight recurve bows and longbows should be measured at your draw length.
ARROW SELECTION

COMPOUND BOW – Release Aid Calculated Peak Bow Weight – lbs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29–35 lbs. (13.2–16.3 kg)</td>
<td>35–40 lbs. (15.9–18.1 kg)</td>
<td>40–45 lbs. (18.2–20.0 kg)</td>
<td>45–50 lbs. (21.8–23.6 kg)</td>
</tr>
<tr>
<td>40–45 lbs. (18.2–20.0 kg)</td>
<td>45–50 lbs. (21.8–23.6 kg)</td>
<td>50–55 lbs. (22.7–26.3 kg)</td>
<td>55–60 lbs. (24.9–28.1 kg)</td>
</tr>
<tr>
<td>50–55 lbs. (22.7–26.3 kg)</td>
<td>55–60 lbs. (24.9–28.1 kg)</td>
<td>60–65 lbs. (27.3–31.8 kg)</td>
<td>65–70 lbs. (29.5–34.5 kg)</td>
</tr>
<tr>
<td>60–65 lbs. (27.3–31.8 kg)</td>
<td>65–70 lbs. (29.5–34.5 kg)</td>
<td>70–76 lbs. (31.8–38.1 kg)</td>
<td>76–82 lbs. (34.5–40.0 kg)</td>
</tr>
<tr>
<td>70–76 lbs. (31.8–38.1 kg)</td>
<td>76–82 lbs. (34.5–40.0 kg)</td>
<td>82–88 lbs. (36.8–40.0 kg)</td>
<td>88–96 lbs. (40.4–41.6 kg)</td>
</tr>
</tbody>
</table>

YOUR ARROW

<table>
<thead>
<tr>
<th>Length for Target • Field • 3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your Arrow – Length for Target</td>
</tr>
<tr>
<td>Length for Field – Length for 3D</td>
</tr>
<tr>
<td>23"</td>
</tr>
</tbody>
</table>

RECURVE BOW

<table>
<thead>
<tr>
<th>Bow Weight – lbs. – Finger Release</th>
</tr>
</thead>
</table>

KEY

- A/C/G: Aluminum/Carbon/Composite
- X10: X10 Shafts (Aluminum/Carbon)
- ProTour: ProTour Shafts (Aluminum/Carbon)
- A/C/E: Aluminum/Carbon/Extreme
- F: FatBoy
- FB: Full Base
- X7: X7 Eclipse (7075-T9 alloy)
- SDRIVE: Super Drive 25
- SDRIEVE: Super Drive 23
- FB: FatBoy
- FBORE: Full Base
- X7: X7 Eclipse (7075-T9 alloy)
- 7S: 7S/Fiber Plus, Tribute, Jazz and Nois (7075 alloy)
- R: The size recommendations for recurve bows are indicated with a letter “R” next to the size.
- Size: Indicates suggested arrow size
- Spine: Spine of arrow size shown (static) ATA standard
- Model: Designates arrow model
- Weight: Listed in grains per inch average for barreled or tapered shaft

Every effort has been made to ensure the accuracy of this catalog. Graphics and images are for illustrative purposes only. Due to on-going efforts to improve our products, Easton reserves the right to make changes without notice. 2018 products available for sale on or after December 1, 2017.

* When two sizes are listed together, the weight listed is for the first shaft.
TARGET SHAFT MODELS

Aluminum/Carbon

<table>
<thead>
<tr>
<th>Pt</th>
<th>Material/Construction</th>
<th>Parts Name</th>
<th>Rock System</th>
<th>Shaft Type</th>
<th>Weight Tolerance</th>
<th>Shoulder Diameter</th>
<th>Shafts Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>E10</td>
<td>3</td>
<td>High-strength aluminum bonded to a precision 370/510 tubular carbon shell — single taper shaft</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.005"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>E10 PRO™</td>
<td>3</td>
<td>High-strength aluminum bonded to a precision 370/510 tubular carbon shell — single taper shaft</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.005"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>A/C/E®</td>
<td>4</td>
<td>High-strength carbon bonded to precision 7075-T6 aluminum tube</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.005"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>A/C/E™</td>
<td>4</td>
<td>High-strength carbon bonded to precision 7075-T6 aluminum tube</td>
<td>RPS Insert</td>
<td>RPS</td>
<td>±0.005"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>FMU MATCH™</td>
<td>4</td>
<td>High-strength carbon core bonded to precision 7075-T6 aluminum tube</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.005"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
</tbody>
</table>

Aluminum

<table>
<thead>
<tr>
<th>Pt</th>
<th>Material/Construction</th>
<th>Parts Name</th>
<th>Rock System</th>
<th>Shaft Type</th>
<th>Weight Tolerance</th>
<th>Shoulder Diameter</th>
<th>Shafts Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBON ONE™</td>
<td>6</td>
<td>Ultralight carbon fiber</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.010"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>APOLLO™</td>
<td>6</td>
<td>Ultralight carbon fiber</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.010"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>SUPERDRIVE 21™</td>
<td>5</td>
<td>High-strength wrapped carbon fiber</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.010"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>SUPERDRIVE 25™</td>
<td>5</td>
<td>High-strength wrapped carbon fiber</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.010"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>LIGHTSPEED 20™</td>
<td>5</td>
<td>Supra-Carbon™ wrapped carbon fiber</td>
<td>CB Insert</td>
<td>RPS</td>
<td>±0.010"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>INSPIRE™</td>
<td>5</td>
<td>Supra-Carbon™ wrapped carbon fiber</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.010"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
</tbody>
</table>

Carbon

<table>
<thead>
<tr>
<th>Pt</th>
<th>Material/Construction</th>
<th>Parts Name</th>
<th>Rock System</th>
<th>Shaft Type</th>
<th>Weight Tolerance</th>
<th>Shoulder Diameter</th>
<th>Shafts Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBON ONE™</td>
<td>8</td>
<td>Ultralight carbon fiber</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.010"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>APOLLO™</td>
<td>8</td>
<td>Ultralight carbon fiber</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.010"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>SUPERDRIVE 21™</td>
<td>7</td>
<td>High-strength wrapped carbon fiber</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.010"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>SUPERDRIVE 25™</td>
<td>7</td>
<td>High-strength wrapped carbon fiber</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.010"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>LIGHTSPEED 20™</td>
<td>7</td>
<td>Supra-Carbon™ wrapped carbon fiber</td>
<td>CB Insert</td>
<td>RPS</td>
<td>±0.010"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
<tr>
<td>INSPIRE™</td>
<td>7</td>
<td>Supra-Carbon™ wrapped carbon fiber</td>
<td>A/C/E Insert</td>
<td>A/C/E</td>
<td>±0.010"</td>
<td>0.280"</td>
<td>40 – 46</td>
</tr>
</tbody>
</table>

ALUMINUM SHAFT COMPONENT SPECIFICATION

Specifications

- **Shaft Weight**: The weight given is based on a 28" spine and is subject to change based on final balance position on the arrow shaft.
- **Spine Length**: Ranges from 28" to 30" and is the spine length of the aluminum shaft.
- **Conventional Rock Nock**: The nomenclature used is based on 28" spine lengths and is the nomenclature used in conjunction with Easton's Aluminum Rock Nock System.
- **UNI System**: The UNI System is used as a nomenclature for Easton's Aluminum Pin Nock System.
- **Pin Nock**: The Pin Nock is used as a nomenclature for Easton's Aluminum Pin Nock System.
- **G Nock**: The G Nock is used as a nomenclature for Easton's Aluminum G Nock System.

TAPER SWAGE

- **S**: Standard taper 1/4" a foot, including 1/4" at the tip and 1/4" at the balance point. These are the most common shafts used in the 300 to 700 series.
- **W**: Wide taper 1/2" a foot, including 1/2" at the tip and 1/2" at the balance point. These are the most common shafts used in the 1200 to 2316 series.

WARNING: FOLLOW THESE INSTRUCTIONS TO AVOID PERSONAL INJURY. SEE WARNINGS AND USE AT WWW.BSAFE.WS OR 887-INFO (887-463-6837)

BOW INSTRUCTION

Before shooting any Easton arrow, it is critical to inspect your bow, including all components, to be sure that it is properly adjusted and in good working order. Easton arrows should only be used with bows that have a center-to-center height and bow length (see Easton arrow specifications sheet on our website) that are compatible with your bow. Selecting the correct arrow and arrow length for the bow is the responsibility of the archer, and failure to do so could result in serious injury to yourself or to others. To determine if your bow has been damaged in any way.

ARMOR DAMAGE

Any arrow can become damaged. An arrow damaged or cut using a high-speed carbon cutter device may cause damage to the arrow. If an arrow has been cut without using a high-speed cutter, it is classified as being undamaged. DISCARD THE ARROW.

ARMOR REPAIRS

Any arrow can become damaged. An arrow damaged can break up or fail and injure you or a bystander. Damage to an arrow shaft or any of its components may occur from improper transport, handling, impact with hard objects in or on the archery field, for example, putting shots into a game animal, or during a natural disaster (hurricanes, earthquakes, etc.). A damaged arrow should not be used. Arm your arrow, common sense, and follow the warnings and instructions below, to determine if your arrow has been damaged in any way.

WARNING! NEVER SHOOT A DAMAGED ARROW.

ARMOR USE PRECAUTIONS

Before shooting an Easton arrow, carefully inspect each arrow shaft and all components to see that they have not been damaged. Before shooting, place the point and fletching ends of the arrow shaft 1 to 2 inches (2.5 to 5 cm) away from your body and from bystanders. Do not face the point of the arrow shaft at your fingers or any other body part. Always keep the arrow shaft pointed away from your body and from bystanders. If an arrow shaft is dropped or damaged in any way, DISCARD THE ARROW. If the shaft is damaged, REPLACE THE SHAFT.

ADDITIONAL TESTS FOR CARBONS

When choosing carbon arrows, perform the following additional tests:

1. Grip the shaft just above the point and below the neck, then flex the arrow in an arch (bending it away from your body) with a deflection of 1 to 2 inches (2.5 to 5 cm), and feel and listen for cracking or cracking noise. If you hear a cracking noise, DISCARD THE ARROW.

2. Make sure that the tip of the arrow is in the correct balanced position on the arrow shaft.

CARBON ARROW CUTTING

Only use a cutting device when using a high-speed arrow cutter. Shaping any other cutting device may cause damage to the arrow. An arrow that has been cut using a high-speed arrow cutter, DISCARD THE ARROW.

WARNING! NEVER SHOOT A DAMAGED ARROW.

To reduce your risk of serious injury or death, you must read and understand all safety warnings and instructions. If you do not understand these instructions, or cannot adequately perform the above tests, STOP and seek appropriate assistance before shooting any arrow.